Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Xenobiotica ; 54(3): 124-137, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38358311

RESUMO

Nivasorexant was the first orexin-1 selective receptor antagonist entering clinical development. Despite encouraging preclinical evidence in animal models, a proof-of-concept trial in binge-eating patients recently failed to demonstrate its clinical utility in this population.Across species, nivasorexant clearance was driven by metabolism along seven distinct pathways, five of which were hydroxylation reactions in various locations of the molecule. The exact sites of metabolism were identified by means of mass spectrometry, the use of deuterated analogues, and finally confirmed by chemical references.CYP3A4 was the main cytochrome P450 enzyme involved in nivasorexant metabolism in vitro and accounting for about 90% of turnover in liver microsomes. Minor roles were taken by CYP2C9 and CYP2C19 but individually did not exceed 3-7%.In the rat, nivasorexant was mostly excreted via the bile after extensive metabolism, while urinary excretion was negligible. Only traces of the parent drug were detected in urine, bile, or faeces.


Assuntos
Hidrocarboneto de Aril Hidroxilases , Humanos , Ratos , Animais , Hidrocarboneto de Aril Hidroxilases/metabolismo , Orexinas/metabolismo , Orexinas/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Hidroxilação , Citocromo P-450 CYP3A/metabolismo , Microssomos Hepáticos/metabolismo , Citocromo P-450 CYP2C19/metabolismo
2.
Xenobiotica ; : 1-13, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38400854

RESUMO

1. Ponesimod is a selective modulator of the sphingosine 1-phosphate receptor 1 (S1P1) approved for the treatment of active relapsing forms of multiple sclerosis. The chemical structure of ponesimod contains a glycerol side chain which is the major target of drug metabolism in humans.2. The two major metabolic pathways give the acids M12 (-OCH2CH(OH)COOH) and M13 (-OCH2COOH). While the former results from oxidation of the terminal alcohol, the mechanism yielding the chain-shortened acid M13 is less obvious. A detailed mechanistic study with human liver microsomes and hepatocytes using ponesimod, M12 and some of the suspected intermediates revealed an unexpectedly complex pattern of enzyme-mediated and chemical reactions.3. Metabolic pathways for both acids were not independent and several of the transformations were reversible, depending on reaction conditions. Formation of M13 occurred either via initial oxidation of the secondary alcohol, or as a downstream process starting from M12.4. The phenol metabolite M32 was produced as part of several pathways. Control experiments at various pH values and in the absence of metabolising enzymes support the conclusion that its formation resulted from chemical degradation rather than from metabolic processes.

3.
ChemMedChem ; 18(10): e202300030, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-36892179

RESUMO

The dual orexin receptor antagonist daridorexant was approved in 2022 in the USA and EU for the treatment of insomnia. The purpose of this study was the identification of its metabolic pathways and the human cytochrome P450 (P450) enzymes involved in its biotransformation. With human liver microsomes, daridorexant underwent hydroxylation at the methyl group of the benzimidazole moiety, oxidative O-demethylation of the anisole to the corresponding phenol, and hydroxylation to a 4-hydroxy piperidinol derivative. While the chemical structures of the benzylic alcohol and the phenol proved to be products of standard P450 reactions, 1D and 2D NMR data of the latter hydroxylation product was incompatible with the initially postulated hydroxylation of the pyrrolidine ring and suggested the disappearance of the pyrrolidine ring and formation of a new 6-membered ring. Its formation is best explained by initial hydroxylation of the pyrrolidine ring in 5-position to yield a cyclic hemiaminal. Hydrolytic ring opening then results in an aldehyde that subsequently cyclizes onto one of the benzimidazole nitrogen atoms to yield the final 4-hydroxy piperidinol. The proposed mechanism was substantiated using an N-methylated analogue, which might hydrolyze to the open-chain aldehyde but cannot undergo the final cyclization step. CYP3A4 was the major P450 enzyme responsible for daridorexant metabolism, accounting for 89 % of metabolic turnover.


Assuntos
Citocromo P-450 CYP3A , Antagonistas dos Receptores de Orexina , Humanos , Citocromo P-450 CYP3A/metabolismo , Antagonistas dos Receptores de Orexina/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Pirrolidinas/farmacologia , Microssomos Hepáticos/metabolismo , Benzimidazóis/farmacologia , Fenóis/farmacologia
4.
Xenobiotica ; 53(3): 173-183, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36809238

RESUMO

Daridorexant is a dual orexin receptor antagonist developed for the treatment of insomnia disorder and has shown improvement in sleep outcomes and daytime functioning. The present work describes its biotransformation pathways in vitro and in vivo and provides a cross-species comparison between the animal species used in preclinical safety assessments and man.Daridorexant clearance is driven by metabolism along seven distinct pathways. Metabolic profiles were characterised by downstream products while primary metabolic products were of minor importance. The metabolic pattern differed between rodent species, with the rat reflecting the human pattern better than the mouse.In rodents, daridorexant is mostly excreted via the bile after extensive metabolism while urinary excretion was negligible in the rat. Only traces of the parent drug were detected in urine, bile, or faeces.Daridorexant has three major metabolites which are well covered in these preclinical safety species. All of them retain some residual affinity towards orexin receptors. However, none of these is considered to contribute to the pharmacological effect of daridorexant as their active concentrations in the human brain are too low.


Assuntos
Antagonistas dos Receptores de Orexina , Distúrbios do Início e da Manutenção do Sono , Masculino , Ratos , Humanos , Camundongos , Animais , Imidazóis , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Pirrolidinas
5.
Front Pharmacol ; 13: 812065, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35431953

RESUMO

ACT-1004-1239 is a potent, selective, first-in-class CXCR7 antagonist, which shows a favorable preclinical and clinical profile. Here we report the metabolites and the metabolic pathways of ACT-1004-1239 identified using results from in vitro and in vivo studies. Two complementary in vitro studies (incubation with human liver microsomes in the absence/presence of cytochrome P450- [CYP] specific chemical inhibitors and incubation with recombinant CYPs) were conducted to identify CYPs involved in ACT-1004-1239 metabolism. For the in vivo investigations, a microtracer approach was integrated in the first-in-human study to assess mass balance and absorption, distribution, metabolism, and excretion (ADME) characteristics of ACT-1004-1239. Six healthy male subjects received orally 100 mg non-radioactive ACT-1004-1239 together with 1 µCi 14C-ACT-1004-1239. Plasma, urine, and feces samples were collected up to 240 h post-dose and 14C-drug-related material was measured with accelerator mass spectrometry. This technique was also used to construct radiochromatograms of pooled human samples. Metabolite structure elucidation of human-relevant metabolites was performed using high performance liquid chromatography coupled with high resolution mass spectrometry and facilitated by the use of rat samples. CYP3A4 was identified as the major CYP catalyzing the formation of M1 in vitro. In humans, the cumulative recovery from urine and feces was 84.1% of the dose with the majority being eliminated via the feces (69.6%) and the rest via the urine (14.5%). In human plasma, two major circulating metabolites were identified, i.e., M1 and M23. Elimination via M1 was the only elimination pathway that contributed to ≥25% of ACT-1004-1239 elimination. M1 was identified as a secondary amine metabolite following oxidative N-dealkylation of the parent. M23 was identified as a difluorophenyl isoxazole carboxylic acid metabolite following central amide bond hydrolysis of the parent. Other metabolites observed in humans were A1, A2, and A3. Metabolite A1 was identified as an analog of M1 after oxidative defluorination, whereas both, A2 and A3, were identified as a reduced analog of M1 and parent, respectively, after addition of two hydrogen atoms at the isoxazole ring. In conclusion, CYP3A4 contributes to a relevant extent to ACT-1004-1239 disposition and two major circulating metabolites were observed in humans. Clinical Trial Registration: (https://clinicaltrials.gov/ct2/show/NCT03869320) ClinicalTrials.gov Identifier NCT03869320.

6.
Pharmacol Res Perspect ; 8(4): e00619, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32613761

RESUMO

The dual endothelin receptor antagonist macitentan was approved in 2013 for the treatment of pulmonary arterial hypertension. Macitentan is an inducer of cytochrome P450 expression in vivo in animal species but not in man. In rat and dog, changes in P450 expression manifest as autoinduction upon repeat dosing. The induction pattern, however, significantly differed between both species, and between male and female rats. While macitentan exposure steadily declined with dose in the dog, P450 induction was saturable in the rat reaching levels of 40%-60% and 60%-80% at steady-state in male and female animals, respectively. The nature and number of P450 enzymes involved in macitentan clearance were identified as a major reason for the observed species differences. In the dog, macitentan was metabolized by a single P450 enzyme, that is, Cyp3a12, whereas several members of the Cyp2c and Cyp3a families were involved in the rat. Macitentan selectively upregulated Cyp3a expression in rat, whereas the expression of the Cyp2c enzymes involved in macitentan metabolism remained mostly unchanged, eventually leading to a higher contribution of Cyp3a upon induction. Macitentan also induced CYP3A4 expression in human hepatocytes via initial activation of the human pregnane X receptor. No such induction was evident in humans at the therapeutic macitentan dose of 10 mg as shown in a clinical drug-drug interaction study with the CYP3A4 substrate sildenafil.


Assuntos
Indutores das Enzimas do Citocromo P-450/farmacologia , Antagonistas dos Receptores de Endotelina/farmacologia , Pirimidinas/farmacologia , Sulfonamidas/farmacologia , Animais , Indutores das Enzimas do Citocromo P-450/administração & dosagem , Cães , Relação Dose-Resposta a Droga , Interações Medicamentosas , Antagonistas dos Receptores de Endotelina/administração & dosagem , Indução Enzimática/efeitos dos fármacos , Feminino , Hepatócitos/metabolismo , Humanos , Masculino , Receptor de Pregnano X/efeitos dos fármacos , Receptor de Pregnano X/metabolismo , Hipertensão Arterial Pulmonar/tratamento farmacológico , Pirimidinas/administração & dosagem , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie , Sulfonamidas/administração & dosagem
7.
J Med Chem ; 63(1): 66-87, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31804826

RESUMO

UDP-3-O-((R)-3-hydroxymyristoyl)-N-glucosamine deacetylase (LpxC) is as an attractive target for the discovery and development of novel antibacterial drugs to address the critical medical need created by multidrug resistant Gram-negative bacteria. By using a scaffold hopping approach on a known family of methylsulfone hydroxamate LpxC inhibitors, several hit series eliciting potent antibacterial activities against Enterobacteriaceae and Pseudomonas aeruginosa were identified. Subsequent hit-to-lead optimization, using cocrystal structures of inhibitors bound to Pseudomonas aeruginosa LpxC as guides, resulted in the discovery of multiple chemical series based on (i) isoindolin-1-ones, (ii) 4,5-dihydro-6H-thieno[2,3-c]pyrrol-6-ones, and (iii) 1,2-dihydro-3H-pyrrolo[1,2-c]imidazole-3-ones. Synthetic methods, antibacterial activities and relative binding affinities, as well as physicochemical properties that allowed compound prioritization are presented. Finally, in vivo properties of lead molecules which belong to the most promising pyrrolo-imidazolone series, such as 18d, are discussed.


Assuntos
Amidoidrolases/antagonistas & inibidores , Antibacterianos/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Infecções por Escherichia coli/tratamento farmacológico , Bactérias Gram-Negativas/efeitos dos fármacos , Ácidos Hidroxâmicos/uso terapêutico , Animais , Antibacterianos/síntese química , Antibacterianos/farmacocinética , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacocinética , Escherichia coli/efeitos dos fármacos , Feminino , Ácidos Hidroxâmicos/síntese química , Ácidos Hidroxâmicos/farmacocinética , Klebsiella pneumoniae/efeitos dos fármacos , Camundongos Endogâmicos ICR , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/enzimologia , Pirróis/síntese química , Pirróis/farmacocinética , Pirróis/uso terapêutico
8.
J Med Chem ; 63(1): 88-102, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31804829

RESUMO

LpxC inhibitors were optimized starting from lead compounds with limited efficacy and solubility and with the goal to provide new options for the treatment of serious infections caused by Gram-negative pathogens in hospital settings. To enable the development of an aqueous formulation for intravenous administration of the drug at high dose, improvements in both solubility and antibacterial activity in vivo were prioritized early on. This lead optimization program resulted in the discovery of compounds such as 13 and 30, which exhibited high solubility and potent efficacy against Gram-negative pathogens in animal infection models.


Assuntos
Amidoidrolases/antagonistas & inibidores , Antibacterianos/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Infecções por Escherichia coli/tratamento farmacológico , Ácidos Hidroxâmicos/uso terapêutico , Administração Intravenosa , Animais , Antibacterianos/administração & dosagem , Antibacterianos/síntese química , Antibacterianos/farmacocinética , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacocinética , Bactérias Gram-Negativas/efeitos dos fármacos , Hepatócitos/metabolismo , Ácidos Hidroxâmicos/administração & dosagem , Ácidos Hidroxâmicos/síntese química , Ácidos Hidroxâmicos/farmacocinética , Camundongos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Ratos , Solubilidade
9.
Xenobiotica ; 49(3): 284-301, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29468921

RESUMO

1. The metabolism of the prostacyclin receptor agonist selexipag (NS-304; ACT-293987) and its active metabolite MRE-269 (ACT-333679) has been investigated in liver microsomes and hepatocytes of rats, dogs, and monkeys. MRE-269 formation is the main pathway of selexipag metabolism, irrespective of species. Some interspecies differences were evident for both compounds in terms of both metabolic turnover and metabolic profiles. The metabolism of MRE-269 was slower than that of selexipag in all three species. 2. The metabolism of selexipag was also studied in bile-duct-cannulated rats and dogs after a single oral and intravenous dose of [14C]selexipag. MRE-269 acyl glucuronide was found in both rat and dog bile. Internal acyl migration reactions of MRE-269 glucuronide were identified in an experiment with the synthetic standard MRE-6001. 3. MRE-269 was the major component in the faeces of rats and dogs. In ex vivo study using rat and dog faeces, selexipag hydrolysis to MRE-269 by the intestinal microflora is considered to be a contributory factor in rats and dogs. 4. A taurine conjugate of MRE-269 was identified in rat bile sample. Overall, selexipag was eliminated via multiple routes in animals, including hydrolysis, oxidative metabolism, conjugation, intestinal deconjugation, and gut flora metabolism.


Assuntos
Acetamidas/farmacocinética , Pirazinas/farmacocinética , Acetamidas/química , Acetamidas/metabolismo , Acetatos/química , Acetatos/metabolismo , Animais , Bile/metabolismo , Líquidos Corporais/química , Cromatografia Líquida de Alta Pressão , Cães/metabolismo , Hepatócitos/metabolismo , Macaca fascicularis/metabolismo , Metaboloma , Microssomos Hepáticos/metabolismo , Pirazinas/química , Pirazinas/metabolismo , Ratos/metabolismo , Ratos Sprague-Dawley , Especificidade da Espécie
10.
Xenobiotica ; 48(7): 704-719, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28737453

RESUMO

1. The metabolism of selexipag has been studied in vivo in man and the main excreted metabolites were identified. Also, metabolites circulating in human plasma have been structurally identified and quantified. 2. The main metabolic pathway of selexipag in man is the formation of the active metabolite ACT-333679. Other metabolic pathways include oxidation and dealkylation reactions. All primary metabolites undergo subsequent hydrolysis of the sulphonamide moiety to their corresponding acids. ACT-333679 undergoes conjugation with glucuronic acid and aromatic hydroxylation to P10, the main metabolite detected in human faeces. 3. The formation of the active metabolite ACT-333679 is catalysed by carboxylesterases, while the oxidation and dealkylation reactions are metabolized by CYP2C8 and CYP3A4. CYP2C8 is the only P450 isoform catalysing the aromatic hydroxylation to P10. CYP2C8 together with CYP3A4 are also involved in the formation of several minor ACT-333679 metabolites. UGT1A3 and UGT2B7 catalyse the glucuronidation of ACT-333679. 4. The potential of selexipag to inhibit or induce cytochrome P450 enzymes or drug transport proteins was studied in vitro. Selexipag is an inhibitor of CYP2C8 and CYP2C9 and induces CYP3A4 and CYP2C9 in vitro. Also, selexipag inhibits the transporters OATP1B1, OATP1B3, OAT1, OAT3, and BCRP. However, due to its low dose and relatively low unbound exposure, selexipag has a low potential for causing drug-drug interactions.


Assuntos
Acetamidas/metabolismo , Acetamidas/farmacologia , Pirazinas/metabolismo , Pirazinas/farmacologia , Receptores de Epoprostenol/agonistas , Acetamidas/sangue , Acetamidas/química , Acetatos/farmacologia , Interações Medicamentosas , Inibidores Enzimáticos/farmacologia , Esterases/antagonistas & inibidores , Esterases/metabolismo , Hepatócitos/metabolismo , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Metaboloma , Metabolômica , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , NADP/metabolismo , Pirazinas/sangue , Pirazinas/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Epoprostenol/metabolismo , Proteínas Recombinantes/metabolismo
11.
Xenobiotica ; 46(3): 253-67, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26337830

RESUMO

1. The metabolism of the endothelin receptor antagonist macitentan has been characterized in bile duct-cannulated rats and dogs. 2. In both species, macitentan was metabolized along five primary pathways, i.e. conjugation with glucose (M9), oxidative depropylation (M6), aliphatic hydroxylation (M7), oxidative cleavage of the ethylene glycol linker (M4) and hydrolysis of the sulfamide moiety (M3). Most of the primary metabolites underwent subsequent biotransformation including conjugation with glucuronic acid or glucose, hydrolysis of the sulfamide group or secondary oxidation of the ethylene glycol moiety. 3. Though there were species differences in their relative importance, all metabolic pathways were present in rat and dog. The depropylated M6 was the only metabolite present in plasma of both species. 4. Metabolism was a prerequisite for macitentan excretion as relevant amounts of parent drug were neither detected in bile nor urine. Biliary excretion was the major elimination pathway, while renal elimination was of little importance.


Assuntos
Antagonistas dos Receptores de Endotelina/farmacocinética , Pirimidinas/farmacocinética , Sulfonamidas/farmacocinética , Animais , Ductos Biliares/metabolismo , Biotransformação , Cromatografia Líquida de Alta Pressão , Cães , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Antagonistas dos Receptores de Endotelina/urina , Etilenoglicol/metabolismo , Feminino , Glucose/metabolismo , Hepatócitos/metabolismo , Hidroxilação , Masculino , Redes e Vias Metabólicas , Microssomos Hepáticos/metabolismo , Pirimidinas/urina , Ratos , Ratos Wistar , Sulfonamidas/urina
12.
Pharmacol Res Perspect ; 3(2): e00123, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26038699

RESUMO

Under pathological conditions, the purinergic P2X7 receptor is activated by elevated concentrations of extracellular ATP. Thereby, the receptor forms a slowly dilating pore, allowing cations and, upon prolonged stimulation, large molecules to enter the cell. This process has a strong impact on cell signaling, metabolism, and viability. This study aimed to establish a link between gradual P2X7 activation and pharmacological endpoints including oxidative stress, hydrogen peroxide generation, and cytotoxicity. Mechanisms of cellular stress and cytotoxicity were studied in P2X7-transfected HEK293 cells. We performed real-time monitoring of metabolic and respiratory activity of cells expressing the P2X7-receptor protein using a cytosensor system. Agonistic effects were monitored using exogenously applied ATP or the stable analogue BzATP. Oxidative stress induced by ATP or BzATP in target cells was monitored by hydrogen peroxide release in human mononuclear blood cells. P2X7-receptor activation was studied by patch-clamp experiments using a primary mouse microglia cell line. Stimulation of the P2X7 receptor leads to ion influx, metabolic activation of target cells, and ultimately cytotoxicity. Conversion of the P2X7 receptor from a small cation channel to a large pore occurring under prolonged stimulation can be monitored in real time covering a time frame of milliseconds to hours. Selectivity of the effects can be demonstrated using the selective P2X7-receptor antagonist AZD9056. Our findings established a direct link between P2X7-receptor activation by extracellular ATP or BzATP and cellular events culminating in cytotoxicity. Mechanisms of toxicity include metabolic and oxidative stress, increase in intracellular calcium concentration and disturbance of mitochondrial membrane potential. Mitochondrial toxicity is suggested to be a key event leading to cell death.

13.
Toxicol In Vitro ; 27(3): 1109-20, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23416262

RESUMO

Drug-induced toxicity is of considerable concern in drug discovery and development, placing emphasis on the need for predictive in vitro technologies that identify potential cytotoxic side effects of drugs. A label-free, real-time, multiparametric cytosensor system has therefore been established for in vitro assessment of drug-induced toxicity. The system is based on monitoring cellular oxygen consumption, acidification and impedance of human hepatocarcinoma-derived HepG2 cells. The read-out derived from the multiparametric cytosensor system has been optimised and permits sensitive, reliable, and simultaneous recording of cell physiological signals, such as metabolic activity, cellular respiration and morphological changes and cell adhesion upon exposure to a drug. Analysis of eight prototypic reference drugs revealed distinct patterns of drug-induced physiological signals. Effects proved to be rigidly concentration-dependent. Based on signal patterns and reversibility of the observed effects, compounds could be classified based as triggering mechanisms of respiratory or metabolic stress or conditions leading to cell death (necrosis-like and apoptosis-like). A test-flag-risk mitigation strategy is proposed to address potential risks for drug-induced cytotoxicity.


Assuntos
Citotoxinas/toxicidade , Avaliação Pré-Clínica de Medicamentos/métodos , Adesão Celular/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Células Hep G2 , Humanos , Fígado , Consumo de Oxigênio/efeitos dos fármacos
14.
Biochim Biophys Acta ; 1808(7): 1827-31, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21439263

RESUMO

The influence of P-glycoprotein (ABCB1) in drug resistance as well as drug absorption and disposition is an important factor to be considered during the development of new drugs. Thus, the early identification and exclusion of compounds showing a high affinity towards P-glycoprotein can help to select drug candidates. The aim of our study was to implement a label-free assay for the identification of P-glycoprotein substrates in living cells. For this approach, a multiparametric, chip-based sensor system was used to determine extracellular acidification, cell respiration and adhesion upon stimulation with P-glycoprotein substrates. Using L-MDR1 cells, a human P-glycoprotein overexpressing cell line, the influence of P-glycoprotein activity was determined for seven different compounds, demonstrating the applicability of the system for P-glycoprotein substrate identification. Effects were concentration dependent, as shown for the P-glycoprotein substrate verapamil, and were associated with cellular acidification and respiration. P-glycoprotein ATPase activation by verapamil could be described by a Michaelis-Menten type kinetic profile showing saturation at high substrate concentrations. The Michaelis-Menten constants K(M) were determined to be 0.92µM (calculated based on extracellular acidification) and 4.9µM (calculated based on cellular respiration). Control experiments using 100nM of the P-glycoprotein inhibitor elacridar indicated that the observed effects were related to P-glycoprotein ATPase activity. In contrast, wild-type LLC-PK1 cells not expressing P-glycoprotein were not responsive towards stimulation with different P-glycoprotein substrates. Summarizing these findings, the used microsensor system is a generic system suitable for the identification of P-glycoprotein substrates. In contrast to biochemical P-glycoprotein assays, activation of the drug efflux pump can be monitored on-line in living cells to identify P-glycoprotein substrates and to study the molecular mechanisms of adenosintriphosphate-dependent active transport.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Ácidos/metabolismo , Oxigênio/metabolismo , Animais , Adesão Celular , Linhagem Celular , Humanos , Concentração de Íons de Hidrogênio , Células LLC-PK1 , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...